Testing Differences between Two Means

Large Independent Sample Means:
Used to test whether the data from two samples come from the same populations or whether two populations are different.

Assumptions:
• samples must be independent, i.e., there can be no relationship between the two samples
• populations must be normally distributed and standard deviations known or sample size > 30
• should not be used if more than two means are tested unless adjustments are made to significance levels (e.g., Bonferroni correction, $\alpha_{\text{Bonferroni}} = \alpha/\text{number of tests}$)

Z-test:
$$Z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Test value: Critical value comes from standard normal (z) distribution. Use one- or two-tailed test. Conservatively, choose the two-tailed test. Values are also available at bottom of t-distribution.

Two samples from one population

Two samples from two populations
The Step-by-Step Approach

Step 1: State hypotheses

Two-tailed:
- \(H_0: \mu_1 = \mu_2 \)
- \(H_1: \mu_1 \neq \mu_2 \)

One-tailed:
- \(H_0: \mu_1 \leq \mu_2 \) or \(H_0: \mu_1 \geq \mu_2 \)
- \(H_1: \mu_1 > \mu_2 \) or \(H_1: \mu_1 < \mu_2 \)

Step 2: Find critical value

Look up \(z \)-score for specified significance (\(\alpha \)) level and for one- or two-tailed test (selected in advance). Usually use \(\alpha = 0.05 \) and two-tailed test, i.e., \(z_{\text{critical}} = \pm 1.960 \). For one-tailed use \(z_{\text{critical}} = \pm 1.645 \).

Step 3: Compute test value

\[
z = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\]

Step 4: Make decision

Draw diagram of normal distribution and critical regions. If test value is in critical region reject the null hypothesis otherwise do not reject.

Step 5: Summarize results

Rerestate hypothesis (null or alternate) accepted in step 4.

If reject null:
There is enough evidence to reject the null hypothesis.

If not reject null:
There is not enough evidence to reject the null hypothesis. Optionally, reword hypothesis in “lay” terms. E.g., There is/is not a difference between the two populations or one population is greater/lesser than the other for the independent variable.
Testing Differences between Two Means

Small Independent Sample Means:
When population standard deviations are unknown and sample size is < 30 use the t-distribution for critical values and a t-test for test values. First use an F-ratio to determine whether sample variances are equal or unequal. Then choose the correct t-test.

Assumptions
- two samples must be independent, i.e., different subjects—if not, use “dependent-groups t-test”
- data must be normally distributed

If sample variances are NOT equal:

Use test value:
$$ t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} $$

For degrees of freedom (df) use smaller of $n_1 - 1$ and $n_2 - 1$
(i.e., conservative choice, higher critical value)

If sample variances are equal:

Use test value:
$$ t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2} \frac{1}{n_1} + \frac{1}{n_2}} \sqrt{\frac{1}{n_1 + n_2 - 2}} $$

and $df = n_1 + n_2 - 2$

Uses a “pooled” estimate of variance that combined with a larger degree of freedom $(n_1 + n_2 - 2)$ increases the test’s power (i.e., ability to find a true difference).
Test for Equal Variances

Also called Homogeneity of Variance
• used primarily to determine which t-test to use
• uses F-distribution and F-test (later used for ANOVA)
• assume variances are equal and test if unequal
• SPSS uses “Levine’s Test for Equality of Variances”
 If P (Sig.) < α variances are NOT equal.

Step 1: Always a two-tailed test.
\[H_0: s_1^2 = s_2^2 \]
\[H_1: s_1^2 \neq s_2^2 \]

Step 2:
Find critical value (F_{CV}) from F-distribution. Use degrees of freedom of larger variance ($df_N = n_{\text{larger}} - 1$) as numerator and degrees of freedom of smaller variance as denominator ($df_D = n_{\text{smaller}} - 1$).

Step 3:
Compute test value:
\[F_{TV} = \frac{s_{\text{larger}}^2}{s_{\text{smaller}}^2} \]
Note, F_{TV} will always be ≥ 1.

Step 4 and 5:
If $F_{TV} > F_{CV}$ then reject H_0 and conclude variances are unequal.
If $F_{TV} \leq F_{CV}$ then do NOT reject H_0 and conclude variances are equal. I.e., you have homogeneity of variances. You can now select the appropriate “Independent-groups t-test”.

Flow Diagram for Choosing the Correct Independent Samples t-Test

Similar to flow diagram used for single sample means. But requires a test for equality of variances (homogeneity of variance). Generally the sample’s mean and standard deviation are used with the t-distribution. The t-distribution becomes indistinguishable from the z-distribution (normal distribution) when $n > 30$. Samples must be independent.

- **Is σ known?**
 - yes: Use z-test with any size sample.
 - no: **Is $n > 30$?**
 - yes: Use z-test but use s for σ.
 - no: **Are variances equal?**
 - yes: Use t-test for equal variances and use pooled estimate of variance.
 - no: Use t-test for unequal variances.
Testing Differences between Two Means

Dependent Sample Means:
Used when two samples are not independent. More powerful than independent groups \(t \)-test and easier to perform (no variance test required). Simplifies research protocol (i.e., fewer subjects) but dependence may limit generalizability.

Examples:
- repeated measures (test/retest, before/after)
- matched pairs \(t \)-test (subjects matched by a relevant variable: height, weight, shoe size, IQ score, age)
- twin studies (identical, heterozygotic, living apart)

Step 1:
- **Two-tailed:**

 \[H_0: \mu_D = 0 \]
 \[H_1: \mu_D \neq 0 \]

- **One-tailed:**

 \[H_0: \mu_D \leq 0 \quad \text{or} \quad H_0: \mu_D \geq 0 \]
 \[H_1: \mu_D > 0 \quad \text{or} \quad H_1: \mu_D < 0 \]

Step 2:

Critical value from \(t \)-distribution with degrees of freedom equal to number of data pairs minus one (\(df = n - 1 \)).

Step 3:

Compute differences between pairs (\(D \)) then mean difference (\(\bar{D} \)) and \(s_D \):

\[\bar{D} = \frac{\sum D}{n} \quad \text{and} \quad s_D = \sqrt{\frac{\sum D^2 - (\sum D)^2}{n(n-1)}} \]

Test value:

\[t = \frac{\bar{D} - \mu_D}{s_D} \cdot \frac{1}{\sqrt{n}} \]

Step 4 and 5:

If test value > critical value reject \(H_0 \) otherwise there is no difference between the two trials/groups.